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We formulate a simple model which describes the interplay between electromagnetic
forces, inertia, and gravity in liquid-metal current-limiting devices utilizing the electro-
magnetic pinch effect. The dynamics of this system, called an H-trough, is completely
described by a nonlinear ordinary differential equation for the fluid’s cross-section
as a function of time. A bifurcation analysis of stationary states is performed. For
a wide range of geometry parameters the cross-section of the fluid is found to be a
discontinuous function of the electrical current. The jump in cross-section above some
critical current is accompanied by a strong increase of the total electric resistance of
the system and results in the current-limiting action of the device by the pinch effect.
An experimental study of the system confirms the predicted switching behaviour.
For low electric current the experiment is in excellent quantitative agreement with
the theory, while for high electric current three-dimensional instabilities and end
effects render the agreement with the one-dimensional model less satisfactory. Our
model enables us to isolate the pertinent non-dimensional parameters for liquid-metal
current limiters and to derive the scaling law of the critical electric current as a
function of the geometry and material properties of the system.

1. Introduction and phenomenology
When an electric current passes through an electrically conducting fluid, the

interaction of the current with its own magnetic field produces a Lorentz force
acting inwardly, which can lead to an instability resulting in a reduction of the cross-
section of the fluid. This phenomenon, called the pinch effect, was first observed in a
liquid metal in Northrup’s classical experiment (Northrup 1907) and has since received
considerable attention in plasma physics (Biskamp 1993 and references therein) as
well as in liquid-metal magnetohydrodynamics (Murty 1960; Bojarevics et al. 1988;
Moreau 1990; Davidson 2001).

Recently, the liquid-metal pinch effect has found a new application in electrical
engineering for current limiting devices in switchgear assemblies (Terhoeven et al.
2001; Berger et al. 2001; Thess et al. 2002). Traditionally, a current limiter (e.g. a
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fuse) is a device which interrupts the electric current in a network in the case of
a short-circuit. After removal of the cause of the short-circuit the device has to be
replaced or mechanically restored which may incur substantial expenditure, especially
in industrial applications characterized by high electric power. In contrast, liquid-
metal current limiters exploit the pinch effect which reduces the cross-section of the
fluid and thereby leads to a drastic increase of the resistance via ignition of an electric
arc. To effectively limit the maximum current this process has to be very fast (a
few milliseconds). An important advantage of a liquid-metal current limiter is its
‘self-healing’ property. When the short-circuit fault is removed, the system returns to
its initial state without any external action. Such a device will be useful in low-voltage
applications at rated currents ranging from several amperes to several kiloamperes.
The self-healing properties and fast reaction times are especially advantageous at
breaking short-circuits with high electrical power. In spite of considerable progress in
the design of such devices, the understanding of the underlying magnetohydrodynamic
(MHD) phenomena is still far from complete. More specifically, no systematic theory
is available to date that is capable of describing the dependence of the critical
electric current and of the response time on the geometry and other parameters of
the system. Although full-scale numerical simulations of the coupled fluid-dynamic–
electromagnetic problem for realistic complex geometries provide useful insight, they
fail to uncover the basic scaling laws of the system.

The purpose of the present work is to introduce a model for the current-limiting
action of the pinch effect in which the mathematical complexity of the governing
three-dimensional time-dependent MHD-equations can be reduced to the greatest
possible extent, while retaining the intricate interplay among electromagnetic, inertial
and gravity forces. After the definition of our system and a qualitative discussion
of its steady-state behaviour, we will formulate in § 2 the mathematical model for
the general time-dependent case. In § 3 we report results of a numerical bifurcation
analysis supplemented by an analytical treatment of the system in the vicinity of its
critical point. In § 4 we describe a simple experiment in which we verify the predictions
of our model. Section 5 summarizes our conclusions and translates our findings into
general scaling relations valid for a broad class of wall-bounded pinch effects under
the influence of gravity forces.

Consider the system shown in figure 1 which we shall call the ‘H-trough’. Two
pairs of vertical plates with a thin gap d are filled with a liquid metal and connected
to each other through a thin horizontal slit. By design an electrical current I flows
through the left-hand vertical gap only. Then the induced magnetic field gives rise to a
Lorentz force which compresses the left-hand fluid column. As a result, the fluid level
h decreases and approaches its minimum possible value h = � as I → ∞. However,
the apparent simplicity of the system is deceptive. Indeed, the system is capable of
non-monotonic behaviour including hysteresis.

In order to develop a preliminary understanding of the behaviour of the H-trough
we shall briefly discuss its steady states. In a steady state the pressures in the left- and
right-hand columns at the location of the horizontal section z = � must be equal. The
pressure distribution p(z) in the left-hand section, which is the sum of hydrostatic
pressure (linear in z) and magnetic pressure (nonlinear in z), is shown in figure 2. For
weak electric currents, the hydrostatic pressure dominates, and the curve z(p) is single
valued. For strong electric currents, however, the total pressure develops a maximum
pmax at zmax ≈ h/2, and the function z(p) becomes multiple valued. This property of
the pressure distribution turns out to be the key to the switching effect, as will be
detailed in § 3.
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Figure 1. Sketch of the system considered. The mass of the fluid in the horizontal section
is assumed to be negligibly small. The origin of the x-axis is at the bottom of the left-hand
vertical section.
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Figure 2. Schematic of the pressure distribution in the left-hand column of the H-trough.

The family of steady states h(I, L, �) whose exact shape will emerge in § 3 as one of
the numerical results, is shown in figure 3. For low filling levels, i.e. L < Lc the fluid
height turns out to be a monotonically decreasing function of the electric current.
When L exceeds a critical value Lc the dependence of h on I ceases to be monotonic.
Upon exceeding a certain threshold of the current, h jumps to a much lower value.
This jump is accompanied by a drastic decrease of the fluid’s cross-section and an
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Figure 3. Qualitative behaviour of steady states of the H-trough. The bracketed symbols are
non-dimensional quantities introduced in § 2. (Lc, Ic, hc) is referred to as the critical point.

increase of the resistance. When the current is reduced, the system jumps back to its
initial state after some hysteresis.

The remainder of the paper is devoted to a theoretical and experimental determ-
ination of the steady states of the H-trough and their stability. We parenthetically
note that the H-trough represents one of the rare examples of MHD problems which
are amenable to rigorous analytic treatment. Moreover, the H-trough may serve as
an illustrative example “for those engaged in research to learn from the interesting
practical problems in industrial fluid mechanics” (Hunt 1991, p. 3) in general, and in
MHD (Davidson 1999) in particular.

2. Formulation of the mathematical model
We use Cartesian coordinates (x, y, z) with x measuring the distance from the left-

hand liquid column, y being parallel to the electric current, and z pointing upward,
whereby the bottom of the trough is located at z = 0. The mathematical model for
the H-trough is based on the assumptions (i) that the liquid metal is an inviscid
incompressible fluid, (ii) that the width of the gap d is very small (i.e. d � h), (iii) that
the electric current density of our infinitely long system is independent of z, and
(iv) that the free surface of the fluid does not support surface waves (i.e. h is
independent of y). The second and third assumptions allow us to use the current and
magnetic field distribution in a thin sheet to compute the Lorentz force in the liquid.



The H-trough: liquid metal current limiters 71

Assumption (iv) is made in order to describe the flow by a single variable, namely
the time-dependent height h(t) of the liquid metal in the left-hand column.

The governing equations for h(t) can be derived in a rigorous way by expressing
the kinetic, potential, and magnetic energy of the system in terms of h and dh/dt , by
constructing the Lagrange function, and deriving the equation of motion by following
the standard procedure known from classical mechanics. However, we find it more
appropriate to present an intuitive formulation here, since this gives a better insight
into the physics of the problem.

In order to derive the equation of motion we need to determine the hydrostatic
pressure distributions pR(z) and pL(z) in the right- and left-hand column, respectively.
The Lorentz force in the left-hand column generates an additional magnetic pressure
besides the usual hydrostatic pressure due to gravity. To compute the magnetic field
we need to know the electric current density J . In a real system with finite length in y,
this quantity would have to be determined by solving a Laplace equation ∇2Φ = 0 for
the electric potential Φ from which the electric current density could be computed as
J = −σ∇Φ . Since we have assumed that our system is unbounded in y, and that the
thickness of the left-hand column is independent of z, we can prescribe the electric
current density as

J(x, z) =
I

h
δd(x)[Θ(z) − Θ(z − h)]ey. (2.1)

In this expression, I/h represents a constant line density of the total current I , Θ

is the Heaviside step function, and δd(x) is defined as δd =1/d for |x| � d/2 and
δd = 0 for |x| >d/2. We only need to compute the horizontal component of the
(two-dimensional) magnetic field at the position of the current sheet. This is most
easily accomplished by introducing a magnetic potential ψ(x, z) via Bx = ∂ψ/∂z and
Bz = −∂ψ/∂x, which automatically satisfies the condition ∇ · B = 0. Ampere’s equation
µ0 J = ∇ × B then becomes

∂2ψ

∂x2
+

∂2ψ

∂z2
= −µ0J (x, z) (2.2)

where J (x, z) = J · ey . For the current distribution (2.1) the solution of (2.2) satisfying
the condition |∇ψ | → 0 at infinity is

ψ(x, z) = −µ0

2π

∫ ∫
J (x ′, z′) ln |r − r ′|dx ′ dz′. (2.3)

This solution can be evaluated explicitly at x = 0 if the current sheet is assumed to be
infinitely thin, i.e. d → 0. In this case δd(x) becomes a delta function and the integral
simplifies to

ψ(0, z) = −µ0I

2πh

∫ z′=h

z′=0

ln |z − z′| dz′ (2.4)

The necessary integration can be done analytically. For 0<z <h we obtain the
magnetic field as

Bx(0, z) =
µ0I

2πh
ln

(
z

h − z

)
. (2.5)

Notice that Bx , the normal component of the magnetic field, is not singular in the
limit d → 0; so (2.5) can be used for the computation of the Lorentz force as if
Bx were independent of x. The vertical component fz of the Lorentz force density
f = J × B is

fz(x, z) = −µ0I
2

2πh2
δd(x)[Θ(z) − Θ(z − h)] ln

(
z

h − z

)
. (2.6)
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Notice that Bx and fz are odd functions with respect to z = h/2. The magnetic pressure
gradient satisfies dpm/dz = fz. The integration can again be performed analytically.
Taking into account that δd = 1/d in the fluid, the magnetic pressure becomes

pm(z) = − µ0I
2

2πh2d

{
z ln

(
z

h − z

)
+ h ln

(
h − z

h

)}
. (2.7)

The magnetic pressure is positive for 0 < z < h, symmetric with respect to z = h/2 and
vanishes at z =0 and z = h.

For deriving the equation of motion we shall now stipulate that the left-hand liquid
column has height h and the right-hand column 2L − h due to the conservation of
mass. The hydrostatic pressure in the left-hand column is the sum of the gravitational
and the magnetic contributions, i.e.

pL(z) = ρg(h − z) + pm(z). (2.8)

The behaviour of this pressure is schematically shown in figure 2. In the right-hand
column, the hydrostatic pressure is given by

pR(z) = ρg(2L − h − z). (2.9)

To obtain the equation of motion for h, we need to apply Newton’s law to each
column of liquid above the horizontal channel (located at height z = �) on either side
of the apparatus. The net force acting on each column is the sum of the integrated
body force density and the difference of the pressure Π between the bottom and the
top of the liquid column. The integrated body force density can be represented by
the difference in hydrostatic pressure between top and bottom (z = �) of the liquid
column. For the left-hand column we have (per unit length in y)

(h − �)ρd
d2

dt2
(h − �) = d[ΠL(�) − ΠL(h) + pL(h) − pL(�)], (2.10)

where ΠL denotes the pressure in the left-hand column. The corresponding equation
for the right-hand column is

(2L−h−�)ρd
d2

dt2
(2L−h−�) = d[ΠR(�)−ΠR(2L−h)+pR(2L−h)−pR(�)]. (2.11)

By subtracting these equations we obtain

2(L − �)ρd
d2h

dt2
= d[ΠL(�) − ΠL(h) − pL(�) + pL(h)

− ΠR(�) + ΠR(2L − h) + pR(�) − pR(2L − h)]. (2.12)

We can now simplify the right-hand side by observing that the pressure at the top is
the ambient pressure, i.e.

ΠL(h) = ΠR(2L − h). (2.13)

We shall also neglect the fluid mass in the horizontal channel, whereby the pressure
must be the same on either side of the horizontal channel, i.e.

ΠL(�) = ΠR(�). (2.14)

Thus, we obtain the equation of motion

2(L − �)ρd
d2h

dt2
= d[pR(�) − pL(�)], (2.15)

where we have observed that the hydrostatic pressures are zero at the top surfaces.
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Figure 4. Graphical solution of (3.1): Non-dimensional function F (x) defined in (2.18) (full
line) together with the function (λ − x)/α (thin lines). Filled [open] circles represent stable
[unstable] solutions.

The height � is an important parameter in this equation. If the electric current were
zero, the liquid would oscillate at a frequency depending only on the length of the
U-shaped column above and including the channel. Equation (2.15) with (2.8) and
(2.9) is the desired equation of motion for h(t). The same equation would have been
obtained by using the Lagrange method, as mentioned earlier.

The mathematical model can be written in a more compact form by introducing
non-dimensional fluid level x and time τ according to

x =
h

�
, τ =

√
g

L − �
t. (2.16)

Our new dynamical variable x should not be confused with the coordinate across the
gap, defined in figure 1. The differential equation for x(τ ) then becomes

d2x

dτ 2
+ x = λ − αF (x), (2.17)

where

F (x) = − 1

2πx

{
ln

(
x − 1

x

)
− 1

x
ln(x − 1)

}
(2.18)

is a dimensionless function shown in figure 4, which describes the magnetic pressure.
Our equation contains two dimensionless parameters. The forcing parameter

α =
µ0I

2

2ρgd�2
(2.19)

describes the strength of the electromagnetic forces in relation to the gravity force.
The filling parameter

λ=
L

�
(2.20)
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Figure 5. Steady solution curves for x depending on α. The limit points of the upper and
lower branch for λ= 5 are marked with circles. The solution changes discontinuously at these
points (i.e. it jumps from one branch to the other). The ‘jump origins’ are denoted by ξ+, ξ−,
and the corresponding ‘jump destinations’ by η+, η−.

is a non-dimensional measure of the initial filling level. For a prescribed forcing α and
a given initial filling λ the nonlinear differential equation (2.17) with (2.18) determines
the time-dependence of the fluid level in the H-trough.

3. Analysis of steady states
3.1. Numerical solution

In mechanical equilibrium (2.17) simplifies to

λ − x = αF (x). (3.1)

This equation determines the family of steady states x(λ, α) shown in figure 3 whereby
x > 1. Remember that x is the non-dimensional filling level, α the electromagnetic
forcing parameter and λ the initial filling level. The general behaviour of the steady
solutions can be best understood by a graphical solution of (3.1) with reference to
figure 4. Observe that the solution of (3.1) is the intersection between the magnetic
pressure function F (x) and the function (λ− x)/α, both shown in figure 4. F (x) rises
monotonically from F = 0 at x = 1 to a maximum at xm ≈ 1.4215 and tends to zero as
x → ∞. As long as λ<xm the intersection is located on the monotonically increasing
branch of F (x), and there can only be one solution x for any α > 0. For λ>xm it
becomes possible that there are three solutions for certain values of α.

We analyse the algebraic bifurcation problem (3.1) numerically using the software
package AUTO97 for continuation and bifurcation analysis (Doedel 1981; Doedel
et al. 1998). In a first step, we prescribe λ and compute x(λ, α) by continuation in the
parameter α. The starting point is the trivial solution x = λ for α = 0 (I ≡ 0). Figure 5
shows results for several values of λ.



The H-trough: liquid metal current limiters 75

3.9 4.0 4.1 4.2 4.3 4.4

36

38

40

42

44 (a)

(b)

λ

α±

Exact

Exact

Local expansion

1.6

1.8

2.0

2.2

2.4

ξ±

Local expansion

3.9 4.0 4.1 4.2 4.3 4.4
λ

Figure 6. Bifurcation curves near the critical point. (a) Bifurcation set (cusp) given by the
curves α+(λ) and α−(λ) together with the local expansion (3.18). (b) Location of the ‘jump
origins’ ξ+, ξ−, together with the local expansion (3.15).

For λ= 3 there is only one solution x for any α > 0. This behaviour changes at larger
values of λ, in agreement with our foregoing discussion. For λ> λc, which is repre-
sented in figure 5 by the curves for λ= 4 and λ=5, there exists an interval (α−, α+)
with three roots for x. The end points of this interval are the limit (bifurcation) points
of the upper solution branch [denoted by (α+, ξ+)] and the lower solution branch
[denoted by (α−, ξ−)], which are connected by a third branch. We will later see that
this third branch is unstable.

The observed behaviour is typical of a scalar equation with two parameters (Seydel
1994). The solution manifold is of the cusp type, which is named after the form of
the region in parameter space (λ, α) where three solutions coexist (figure 6a). The
next step in the bifurcation analysis is to compute the boundaries of the cusp,† i.e.
we have to trace the limit points as functions of λ. The AUTO97 software also allows
us to perform this computation. Figure 6 shows the functions α±(λ) and ξ±(λ), which

† The cusp boundary is the bifurcation set, i.e. the parameter values (λ, α), for which the solution
changes qualitatively.
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we call ‘jump origins’. They merge at the critical point

λc ≈ 3.965, xc ≈ 1.8867, αc ≈ 35.637. (3.2)

From a practical viewpoint it is not only important to know where the solution
changes discontinuously, but also by how much. We have therefore not only computed
the limit points ξ±(λ), but also the corresponding values η±(λ) on the continuous
branches, which we call ‘jump destinations’ (see figure 5). Together with the ‘jump
origins’ ξ±, they determine the discontinuous jump from one branch to the other and
thus the change of resistivity of the device.

The transition from monotonic to non-monotonic behaviour can be understood by
invoking the spatial distribution of the pressure in the left-hand section, shown in
figure 2. Recall that for weak electric currents, the hydrostatic pressure dominates, and
the curve z(p) is single valued. For strong electric currents, the total pressure develops
a maximum pmax at zmax ≈ h/2, and the function z(p) becomes multiple valued. If the
pressure maximum is located below the horizontal section, which is the case for low
filling levels, an increase of the electric current will compress the left-hand column
and displace the pressure maximum further away from z = �, resulting in a monotonic
decrease of h(I ). This situation should be contrasted with the case when the pressure
maximum is above z = �. Here the joint action of pressure rise due to increasing I and
of pressure rise due to zmax approaching � can no longer be compensated by a higher
hydrostatic pressure difference once the current has exceeded some critical value. As
a result, the state is no longer stable and the system jumps to another equilibrium
with lower h.

When the system jumps from a state with x ∼ λ to a state with x � λ it not only
changes its electrical resistivity (which is proportional to x−1) but also its mechanical
stiffness. This feature is revealed by considering the frequency ω0(λ, α) of small-
amplitude oscillations around a steady state x0. Considering time-dependent states
of the form x(τ ) = x0 + ε(τ ) and linearizing (2.17) with respect to the infinitesimal
perturbation ε, it can be readily shown that the frequency of small-amplitude
oscillations is given by

ω2
0 = 1 + αF ′(x0). (3.3)

The AUTO97 software can compute this frequency as it traces the stationary solution
branch. Figure 7 shows the result for λ= 5. For α = 0 we have ω0 = 1 (not shown)
which corresponds to free oscillations of an ideal fluid in a U-shaped column. When
the electric current is switched on, this oscillation frequency decreases monotonically
with α and tends to zero as α → α+ (point A in figure 7). When α is increased beyond
α+, the system jumps to point B. This branch is characterized by a higher frequency
of oscillations, indicating that the system is more ‘stiff’ in the bifurcated state. When
α is decreased beyond α−, the system jumps back from C to D. The branch with
ω2

0 < 0 extending between α− and α+ indicates that the third solution is unstable.

3.2. Asymptotic solution for λ→ λc

Since it is of considerable practical interest to understand the system in the vicinity of
the critical point (λc, αc, xc) we shall now analytically investigate the behaviour in this
part of the parameter space, which is shown more clearly in figure 6. The bifurcation
points ξ±(λ) and α±(λ) are determined by

∂α(λ, ξ )

∂ξ
=

∂

∂ξ

{
λ − ξ

F (ξ )

}
= 0. (3.4)
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Figure 7. Frequency of small-amplitude oscillations about the steady states of the H-trough
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The critical point λc is characterized by a double zero because the bifurcation points
ξ±(λc) coincide, i.e.

d2α(λ, ξ )

dξ 2
= 0. (3.5)

From this equation and the solutions

λ − ξ (λ) = −F (ξ (λ))/F ′(ξ (λ)), α(λ) = −1/F ′(ξ (λ)). (3.6)

of (3.4) for the bifurcation points we find the critical point condition

F ′′(xc) = 0. (3.7)

The Taylor series of F about ξ = xc has the form

F (xc + ξ̃ ) = A + Bξ̃ + Cξ̃ 3/6 + . . . , (3.8)

where ξ = xc + ξ̃ , λ= λc + λ̃, and α = αc + α̃. The coefficients in this series are
A= (λc − xc)/αc, B = −1/αc, C ≈ 0.0916. We now substitute the expansion (3.8) into
equations (3.6). This provides one relation between ξ̃ and λ̃ and one between ξ̃ and α̃:

λ̃(B + Cξ̃ 2/2 + . . .) = (ξ̃ + A/B)(Cξ̃ 2/2 + . . .) − (Cξ̃ 3/6 + . . .), (3.9)

α̃(B + Cξ̃ 2/2 + . . .) = (Cξ̃ 2/2 + . . .)/B. (3.10)

To obtain a non-trivial relation ξ̃ (λ̃) we retain terms up to second order. We find

ξ̃ 2 =
2B2

AC
λ̃. (3.11)

For α̃(λ̃) we divide (3.9) by (3.10) and retain only linear terms in ξ̃ on the right-hand
side. We then solve for α̃ using (3.11) and obtain

α̃ = λ̃/A ± λ̃3/2 2B2

3A2

(
2

AC

)1/2

. (3.12)
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Reverting to the original variables α, λ, the desired asymptotic solutions in the vicinity
of the critical point are

ξ± = xc ±
[
2B2

AC
(λ − λc)

]1/2

, (3.13)

α± = αc +
λ − λc

A
± (λ − λc)

3/2 2B2

3A2

(
2

AC

)1/2

. (3.14)

Figure 6 shows that the solutions (3.13), (3.14) are in excellent agreement with the
exact numerical values close to λc.

3.3. Asymptotic solution for λ→ ∞
The limit of large filling levels (where the initial fluid height h = L is far above
the height � of the horizontal section) can be analytically investigated by invoking
equations (3.6) and the asymptotic behavior of F −1dF (x)/dx. We shall not present
this analysis here. We instead quote the final result for the bifurcation curves in the
form

ξ− → xm ≈ 1.4215, ξ+ ∼ 2λ/3, (3.15)

and

α+ ∼ π(2λ/3)3/ ln(2λ/3), α− ∼ λ/F (xm) ≈ 14.69λ. (3.16)

These expressions are found to be in excellent agreement with the exact numerical
results for large values of λ.

4. Experimental results
We tested our theoretical predictions by building two laboratory models of the

H-trough differing by their length Ly and electrode height Lz, shown in the insets of
figure 8. The model with Ly = 14.6 mm and Lz = 100 mm will be referred to as the
‘long trough’ whereas the model with Ly = 5.5 mm and Lz = 130 mm is referred to as
the ‘short trough’. The design of the troughs is almost entirely identical to the sketch
in figure 1 and will therefore not be discussed in detail here. Both models are made
of Plexiglas. The width of the vertical gaps d = 1 mm, which is equal to the width
of the electrodes, is chosen as small as possible in order to keep the electric heat
generation low. The horizontal connection between the two vertical chambers, located
at � = 26.4 mm, consists of a thin pipe 4mm in diameter. The troughs are filled with
liquid metal. We use a Ga–In–Sn eutectic alloy with a density ρ = 6363 kgm−3 and an
electrical conductivity σ = 3.307 × 106 �−1 m−1 as the working fluid. Its free surface is
covered by an ethanol layer with 2% HCl added in order to prevent oxidation and to
improve the wetting properties of the liquid metal. Alternating current (AC) with a
fixed frequency of 50 Hz and a variable strength in the range 0 <I < 1500 A is injected
into the liquid metal by two water-cooled copper electrodes. Using AC rather than
DC current has the advantage that we can easily measure the magnetic field outside
the system by using small induction coils. This independent measurement technique is
useful in analysing the dynamical behaviour of our system, which, however, is outside
the scope of the present paper. Notice that the frequency of the electric current is still
low enough for the skin effect to be negligible.

Each experiment is started by filling the trough to a low level L � Lz. The electric
current is then gradually increased from zero, and the fluid level h is recorded as a
function of I as soon as the system has settled at a steady state. This procedure is
repeated for increasingly large L until the maximum filling level L = Lz is reached.
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Figure 8. Comparison between experimental and theoretical results for the steady states of
an H-trough. (a) Long trough with Ly = 14.6 mm and Lz =100 mm, (b) short trough with
Ly = 5.5 mm and Lz = 130mm. Insets illustrate the different levels of non-uniformity of the
electric current density in the liquid metal.

The results of our experimental investigations, shown in figure 8, can be summarized
in just two sentences. The long trough shows an excellent quantitative agreement with
the theoretical predictions, but observation of the switching effect is prevented by
three-dimensional instabilities. The short trough clearly confirms the existence of the
switching effect but agrees with the theory only qualitatively due to its very limited
length.
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Figure 8(a) shows the steady states obtained in the long trough. The agreement
with the theoretical predictions is remarkable, given the highly simplified nature of
the mathematical model. However, the experimental curves are limited by the onset of
instabilities at the free surface of the current-carrying liquid metal which are excluded
from our analysis. It was observed that above a critical electric current, roughly given
by α ∼ λ2 (cf. the parabola in figure 8a), unstable waves emerged at the surface. If the
current was not switched off, nonlinear evolution transformed the wave into a finger,
which, upon its rapid touchdown, created arc effects and lead to a violent boiling of
the covering liquid. Similar observations were reported in the earlier experiment of
Northrup (1907) and are known to occur in various other electrically driven vortical
flows (Bojarevics et al. 1998).

In order to suppress the three-dimensional instabilities, the short trough was used.
The hypothesis that a short trough is less prone to three-dimensional instabilities than
a long one rests on the assumption that in the present system long waves are the
most ‘dangerous’ modes. Although we did not perform a stability analysis, we believe
that Ic(k), the critical electric current for three-dimensional instabilities as a function
of the wavenumber k, is a monotonically increasing function with its minimum at
k = 0. Such behaviour is supported by recent observations of pinch phenomena in
an annular liquid metal sheet under the influence of a high-frequency magnetic field
(Mohring, Karcher & Schulze 2004).

Figure 8(b) confirms the existence of the predicted switching effect. It is clearly
seen that for sufficiently high initial filling level the system jumps to a bifurcated
state characterized by low x. Visual observation of the fluid surface in these states
shows surface fluctuations with a much higher frequency than in the initial condition,
in agreement with the behaviour of small-amplitude oscillations shown in figure 7.
Hysteresis was not observed, probably due to the fact that only slightly supercritical
values of λ were accessible in our experiment. While in good qualitative accord with
theory, the quantitative agreement of the short trough with the predictions, shown
with thin solid lines in figure 8, is less satisfactory. The reason for this is twofold. On
the one hand, the electric current density in the short trough is far from homogeneous
in the y-direction. The electric current lines emanating from the long copper electrodes
become compressed when entering the liquid metal, leading to a strong deviation from
the assumption underlying our theory. On the other hand, fluid flow within the liquid
metal, which is driven by the rotational part of the Lorentz force (not present in our
theory), destabilizes the system leading to the observed unstable waves and subsequent
nonlinear switching effects. Recent computations of steady states by using (3.1) with
a function F (x) obtained from a full three-dimensional finite-element computation of
the Lorentz force taking into account the finite length of the system (Gerner 2004)
lead to a better, albeit still imperfect, agreement with the experiment. This observation
indicates that in order to fully reproduce the behaviour of the experimental systems,
a three-dimensional solution of the coupled electromagnetic–fluid dynamic problem
is necessary, which is beyond the scope of this paper. In spite of these facts, the
experimentally determined critical point

λc = 3.9 ± 0.3, xc = 2.6 ± 0.2, αc = 21 ± 4 (4.1)

is in reasonable agreement with the theoretical values

λc = 3.965, xc =1.8867, αc = 35.637 (4.2)

(cf. (3.2)). The uncertainties are due to an inaccuracy of about 2.5% in the deter-
mination of h, electric current fluctuations and measurement uncertainty of about
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Ga–In–Sn Na–K & Kerosene

System d = 1 mm d = 5 mm d = 1 mm d = 5 mm

Ic (A) 297 3323 8.34 93.2
Uc (V) 0.476 1.063 0.0179 0.0400
Pc (W) 141 3531 0.149 3.72
Rc (m�) 1.60 0.316 2.15 0.430
Lc (mm) 19.8 99.0 19.8 99.0
hc (mm) 9.45 47.2 9.45 47.2

Table 1. Physical parameters for two different fluid systems at the critical point.

2%, and an estimated uncertainty of 2.5% for the thermophysical properties of our
working liquid.

5. Summary and discussion
We have formulated a simple mathematical model describing the basic mechanism

of liquid-metal current limiters and verified its validity by a series of model experi-
ments.

In order to derive general practical conclusions from our model it is useful to trans-
late the non-dimensional quantities back into physical parameters. Using the para-
meters λc, xc, and αc given in equation (3.2) we can derive the relations

Ic =

√
2αcgρd

µ0

�, (5.1)

Lc = λc�, (5.2)

hc = xc�, (5.3)

for the electric current Ic, and the initial (Lc) and instantaneous (hc) height of fluid
for which the current limiting effect will first occur. If we assume in addition that the
system has a finite length Ly in the y-direction then the total electric resistance of the
left-hand section R = Ly/σd�x (σ = electrical conductivity) can be used to compute

the voltage U =RI and the dissipated electric power P = RI2 at critical current as

Uc =

√
2αcgρ

dµ0

Ly

σxc

, (5.4)

Pc =
2αcgρLy�

σµ0xc

. (5.5)

Let us select d0 = 1mm, �0 = 5 mm, Ly0 = 50 mm as reference values for the geometry
parameters and consider a family of systems related to the reference system by a
scaling parameter s, i.e. d = sd0, � = s�0, Ly = sLy0. Table 1 shows critical parameters
for s = 1 and s = 5 both for an H-trough filled with a Ga–In–Sn eutectic alloy
(ρ =6363 kg m−3, σ = 3.307 × 106�−1 m−1) and for a two-fluid system consisting of a
liquid sodium and potassium alloy (ρ = 855 kg m−3, σ = 2.46 × 106�−1 m−1) covered
by kerosene, which is insulating and only slightly lighter (ρ =850 kg m−3). For the
two-fluid system in a closed loop, i.e. the columns connected at the top and completely
filled, the effective density is just the density difference between the two fluids. This
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Figure 9. Response of the H-trough to a short current pulse given by (5.9).

leads to much lower critical currents, a fact which was exploited by Northrup (1907)
in his experiments.

Furthermore, our expressions for the critical parameters permit one to understand
how the performance characteristics of current limiters change with the size of the
system. If we set d = sd0, � = s�0, and Ly = sLy0 in (5.1), (5.4), and (5.5) we obtain the
dependence of all parameters on the geometry scaling factor s in the form

Ic ∼ s3/2, (5.6)

Uc ∼ s1/2, (5.7)

Pc ∼ s2. (5.8)

It follows that the critical current per unit mass m ∼ s3 scales as Ic/m ∼ s−3/2 implying
that small devices are more efficient in current limitation than large ones. For practical
applications the scaling behaviour at constant Ly , i.e. d = sd0, � = s�0, Ly = const is
equally important. It is readily verified that the pertinent scaling laws are Ic ∼ s3/2,
Uc ∼ s−1/2, Pc ∼ s, m ∼ s2, and Ic/m ∼ s−1/2. These scaling laws apply for the situation
where the distance between the electrodes is kept constant.

Although we did not address the dynamical behaviour of our system in the present
work, this is an issue of great practical importance. Figure 9 shows the response of
the H-trough operating at its stationary solution α0 = 46.618, x0 = 2.5794 to a short
current pulse of the form

α(τ ) = α0 + D[Θ(τ ) − Θ(τ + 1)] (5.9)

as obtained by numerically solving (2.17) with an additional linear friction term
µdx/dτ on the left-hand side. After the current pulse with D = 8 the system returns
to its stable state, whereas after a perturbation with D =9 it switches to the current-
limiting state. The friction coefficient in the numerical solution was (somewhat
arbitrarily) chosen as µ = 2 such that the system at α = 0 is just at the boundary
between damped oscillations (µ < 2) and the aperiodic case (µ > 2). For practical
applications µ has to be estimated from laminar or turbulent friction laws for a
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U-bend. Once this step has been performed, our simple theoretical model can be
easily integrated into existing software for network simulations, and can be used
to perform extensive parameter studies which would be impossible if one were to
use the full three-dimensional equations of magnetohydrodynamics. In reality such
a device would be part of an electrical network consisting of a voltage source and
ohmic inductive impedances such as cables, motors, heaters etc. Then the current is
dependent on the combined impedance of all devices and therefore will be limited by
an strong increase of the device’s resistance. However, modelling of this behaviour is
beyond the scope of the present work.

Finally, we note that the three-dimensional instabilities, which prevented a
continuation of the experimental curves in figure 8(a) to higher α, represent an
interesting hydrodynamic phenomenon, closely related to the interface instabilities
studied by Fautrelle & Sneyd (1998) as well as to pinch-off effects known from
ordinary hydrodynamics (Eggers 1993, 1997). A natural first step towards the
understanding of such instabilities would be to consider a single infinitely long
vertical liquid-metal sheet carrying a prescribed electric current. For this system,
which corresponds to a single left-hand column of the H-trough, it may be expected
that the deformable surface h(y, t) becomes unstable with respect to long waves
beyond a critical electric current. Our observation from figure 8(a) that the three-
dimensional instabilities occur for α ∼ λ2 suggests that the critical current should
scale with the fluid height as I ∼ L, a fact that could be tested in an experiment.
Further theoretical and experimental investigation of these effects could improve our
understanding of the dynamics of the free surface under the influence of Lorentz
forces.
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